Explicit keyword in C++

Ever wonder what is the meaning of explicit keyword in C++? I found good explanation from StackOverflow.

 

 

In C++, the compiler is allowed to make one implicit conversion to resolve the parameters to a function. What this means is that the compiler can use single parameter constructors to convert from one type to another in order to get the right type for a parameter. Here’s an example class with a constructor that can be used for implicit conversions:

class Foo
{
public:
  // single parameter constructor, can be used as an implicit conversion
  Foo (int foo) : m_foo (foo) 
  {
  }

  int GetFoo () { return m_foo; }

private:
  int m_foo;
};

Here’s a simple function that takes a Foo object:

void DoBar (Foo foo)
{
  int i = foo.GetFoo ();
}

and here’s where the DoBar function is called.

int main ()
{
  DoBar (42);
}

The parameter is not a Foo object, but an int. However, there exists a constructor for Foo that takes an int so this constructor can be used to convert the parameter to the correct type.

The compiler is allowed to do this once for each parameter.

Prefixing the explicit keyword to the constructor prevents the compiler from using that constructor for implicit conversions. Adding it to the above class will create a compiler error at the function call DoBar (42). It is now necessary to call for conversion explicitly with DoBar (Foo (42))

The reason you might want to do this is to avoid accidental construction that can hide bugs. Contrived example:

  • You have a MyString(int size) class with a constructor that constructs a string of the given size. You have a function print(const MyString&), and you call it with print(3). You expect it to print “3”, but it prints an empty string of length 3 instead.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s